Known Typos 2nd Edition
The Incomplete typo list to the Incomplete Guide To Option Pricing Formulas

A correction list to a book written by Espen Gaarder Haug

Main Error

That I spent so much of my time writing this book.

Thanks

And also thanks to all the people that sent in errors that not were errors. I calculated that if I added all assumed errors sent by readers to my correction list then we would add more errors to my book than we removed from my book. That said I have also received several possible typos/errors that I never have got the opportunity to investigate fully yet.

Front Page:

Title should have been: The Incomplete Guide to Option Pricing Formulas instead of the Complete..., but my publisher did not buy into this title. My first suggested title was actually: A Collection of Option Pricing Formulas.

Page 7:

Currency option example: text is wrong; USD should be domestic rate, EUR foreign rate (because EUR is quoted in USD per EUR). Further it should be a USD-put/EUR-call. However calculations based on this are correct.

Page 15:

Second equation from top, just after large parenthesis it should be a \(dt \)
Page 49:

Example ending page 49. SpeedP is calculated to be -0.0135. This should be done directly by formula 2.22. And not simply by multiplying Speed by \(\frac{S}{100} \).

Page 50:

Vega is on this page defined as second derivatives, it should naturally be first derivative. That is \(\frac{\partial^2 c}{\partial \sigma^2} \) should be replaced by \(\frac{\partial c}{\partial \sigma} \). The derived formula is however correct.

Page 70:

Equation (2:48), \(\frac{\partial c}{\partial r} \) should naturally be \(\frac{\partial p}{\partial r} \).

Page 73: Example Phi

1.6180/100 should naturally be 0.01618 and not 0.1618

Everything is not what is seems to be, Golden... ;)

Page 98:

\[
S_{i+1} = \frac{[X - RHS(S_i) - b_iS_i]}{(1 - b_i)}.
\]

should be (switch sign in front of RHS)

\[
S_{i+1} = \frac{[X + RHS(S_i) - b_iS_i]}{(1 - b_i)}.
\]

The Computer code in the book (p 100 to 101) and on the CD do not have this problem.

Page 105:

On the last line of equation 3.2 there should be a \(X \) in front of the \(\Psi(S,T,0,X,I_2,I_1,t_1) \). The VBA code in the book or on the CD do not have this error.

Page 106:

The denominator of \(e_3 \) should be changed from \(\sigma \sqrt{T} \) to \(\sigma \sqrt{t_1} \).
Page 106:
in f_3: I_2^3 should be replaced with I_2^1. The computer code is fine.

Page 116:
First line under Example: text should state six months to expiration, instead of three to get consistent with numerical example.

Page 111:
second line first paragraph: $0 \geq D \leq 1$, should be changed to: $0 \leq D \leq 1$

Page 142: Floating-Strike Lookback Options

Book is okay. But in computer code for chapter 4: Call on maximum should be call on minimum and Put on minimum should be Put on maximum. To fix this in cell L4 change to “Call on minimum” and cell L5 change to “Put on maximum”, and in VBA code change ”c” to ”p” and ”p” to ”c”. After corrections should look like this:

```vba
If CallPutFlag = "p" Then
    If S > SMax Then
        SMax = S
    End If
ElseIf CallPutFlag = "c" Then
    If S < SMin Then
        SMin = S
    End If
End If
m = SMax
```

Page 123: Fade-in Option

In equation 4.19 and 4.20: $S^{(b-r)T}$ should be corrected to $S_e^{(b-r)T}$.
The computer code do not have this problem.

Page 178: Binary Option Values

For option number 14, in the computer code on the CD when $X > H$ value should be B_1 rather than B_3. The book is correct.

Page 180: Binary Option Values

For option formula number 20 there seems to be a typo in the original paper of Reiner and Rubinstein (1991) that have carried over in my book. In the case of $X > H$ then A_3 should be replaced with A_4. The same holds for the computer code on the CD. The original paper can be found at www.in-the-money.com
Page 180: Binary Option Values

In table 4-22 page 180, there was a few typos, the correct table is given below, what is changed is the numbers marked in bold face:

Table 1: Binary Barrier Option Values

\(H = 100, T = 0.5, r = 0.1, b = 0.1, \sigma = 0.2\)

\(K = 15, \text{ except for option numbers (3) and (4) where } K = H\)

<table>
<thead>
<tr>
<th>Option #</th>
<th>(S)</th>
<th>(X = 102)</th>
<th>(X = 98)</th>
<th>Option #</th>
<th>(S)</th>
<th>(X = 102)</th>
<th>(X = 98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>105</td>
<td>9.7264</td>
<td>9.7264</td>
<td>(15)</td>
<td>105</td>
<td>37.2782</td>
<td>45.8530</td>
</tr>
<tr>
<td>(2)</td>
<td>95</td>
<td>11.6553</td>
<td>11.6553</td>
<td>(16)</td>
<td>95</td>
<td>44.5294</td>
<td>54.9262</td>
</tr>
<tr>
<td>(3)</td>
<td>105</td>
<td>64.8426</td>
<td>64.8426</td>
<td>(17)</td>
<td>105</td>
<td>4.4314</td>
<td>3.1454</td>
</tr>
<tr>
<td>(4)</td>
<td>95</td>
<td>11.6553</td>
<td>11.6553</td>
<td>(18)</td>
<td>95</td>
<td>5.3297</td>
<td>3.7704</td>
</tr>
<tr>
<td>(5)</td>
<td>105</td>
<td>77.7017</td>
<td>77.7017</td>
<td>(19)</td>
<td>105</td>
<td>27.5644</td>
<td>18.9896</td>
</tr>
<tr>
<td>(6)</td>
<td>95</td>
<td>11.2223</td>
<td>11.2223</td>
<td>(20)</td>
<td>95</td>
<td>33.1723</td>
<td>22.7755</td>
</tr>
<tr>
<td>(7)</td>
<td>105</td>
<td>64.8426</td>
<td>64.8426</td>
<td>(21)</td>
<td>105</td>
<td>4.8758</td>
<td>4.9081</td>
</tr>
<tr>
<td>(8)</td>
<td>95</td>
<td>77.7017</td>
<td>77.7017</td>
<td>(22)</td>
<td>95</td>
<td>0.0000</td>
<td>0.0407</td>
</tr>
<tr>
<td>(9)</td>
<td>105</td>
<td>4.9081</td>
<td>4.9081</td>
<td>(23)</td>
<td>105</td>
<td>39.9391</td>
<td>40.1574</td>
</tr>
<tr>
<td>(10)</td>
<td>95</td>
<td>3.0461</td>
<td>3.0461</td>
<td>(24)</td>
<td>95</td>
<td>0.0000</td>
<td>0.2676</td>
</tr>
<tr>
<td>(11)</td>
<td>105</td>
<td>40.1574</td>
<td>40.1574</td>
<td>(25)</td>
<td>105</td>
<td>0.0323</td>
<td>0.0000</td>
</tr>
<tr>
<td>(12)</td>
<td>95</td>
<td>17.2983</td>
<td>17.2983</td>
<td>(26)</td>
<td>95</td>
<td>3.0461</td>
<td>3.0054</td>
</tr>
<tr>
<td>(13)</td>
<td>105</td>
<td>4.9289</td>
<td>6.2150</td>
<td>(27)</td>
<td>105</td>
<td>0.2183</td>
<td>0.0000</td>
</tr>
<tr>
<td>(14)</td>
<td>95</td>
<td>5.8926</td>
<td>7.4519</td>
<td>(28)</td>
<td>95</td>
<td>17.2983</td>
<td>17.0306</td>
</tr>
</tbody>
</table>

Page 186:

Equation 4.98, there should be a minus sign in front of \(d_2\) and \(d_1\) since it is a put option.

Page 187:

Third paragraph, last line “....value must be multiplied by \(\frac{T^2}{2}\), where” should be “....value must be multiplied by \(\frac{T}{T_2}\), where”.

The computer code is okay!.
Page 192: Discrete Asian Approximation

Equation (4.103) move parenthesis

\[p_A \approx e^{-rT} \left(X_N(d_2) - F_A N(d_1) \right), \]

should be

\[p_A \approx e^{-rT} \left(X_N(d_2) - F_A N(d_1) \right), \]

Page 200:

A missing paranthese in \(E[A_T^2] \) equation, so should be:

\[
E[A_T^2] = \frac{S^2}{n^2} \left(\sum_{i=1}^{n} e^{2b + \sigma_i^2} t_i + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} e^{(b + \sigma_i^2) t_i} e^{b t_j} \right).
\]

The computer code dose not have this problem.

Page 204:

The formula for a call (5.1) should be

\[c = e^{-rT} \left(F_N(d_1) - X_N(d_2) \right) \]

and for a put (5.2) it should be

\[p = e^{-rT} \left(F_N(d_2) - X_N(d_1) \right) \]

The computer code is okay.

Page 244: Constant Elasticity option table

For the last column the values are given for \(X = 115 \) not \(X = 110 \).

Page 356: Mean Reversion Monte Carlo

\[
\text{ST} = \text{ST} + \kappa \cdot (\theta - \text{ST}) \cdot dt + \nu \cdot \text{ST} \cdot \beta \cdot \nu \cdot \text{Sqr}(dt) \cdot \text{Application.NormInv(Rnd(), 0, 1)}
\]

Should be changed to

\[
\text{ST} = \text{ST} + \kappa \cdot (\theta - \text{ST}) \cdot dt + \nu \cdot \text{ST} \cdot \beta \cdot \text{Sqr}(dt) \cdot \text{Application.NormInv(Rnd(), 0, 1)}
\]
The same problem on the CD.

Page 356: Random Numbers

In second equation for ε we should divide by $\sqrt{2}$. This is not used in any computer code on CD and have no effect here.

Page 360:

Equation 8.6 and 8.7 should be divided by number of simulations n.

Further:

$$\varepsilon_c = [1 - N(d)] \varepsilon + N(d)$$

should be

$$\varepsilon_c = [1 - N(d)] \varepsilon + N(d)$$

Page 369:

The dividends are not discounted properly (need minus signs before r), so 9.1 need to be changed from

$$\sigma^2_{\text{adj}} = \left(\frac{S\sigma}{S - \sum_{i=1}^{n} D_i e^{rt_i}}\right)^2 (t_1 - t_0) + \left(\frac{S\sigma}{S - \sum_{i=2}^{n} D_i e^{rt_i}}\right)^2 (t_2 - t_1) + \cdots + \sigma^2(T - t_n)$$

$$= \sum_{j=1}^{n} \left(\frac{S\sigma}{S - \sum_{i=j}^{n} D_i e^{rt_i}}\right)^2 (t_j - t_{j-1}) + \sigma^2(T - t_n)$$

To

$$\sigma^2_{\text{adj}} = \left(\frac{S\sigma}{S - \sum_{i=1}^{n} D_i e^{rt_i}}\right)^2 (t_1 - t_0) + \left(\frac{S\sigma}{S - \sum_{i=2}^{n} D_i e^{rt_i}}\right)^2 (t_2 - t_1) + \cdots + \sigma^2(T - t_n)$$

$$= \sum_{j=1}^{n} \left(\frac{S\sigma}{S - \sum_{i=j}^{n} D_i e^{rt_i}}\right)^2 (t_j - t_{j-1}) + \sigma^2(T - t_n)$$

The computer code is okay.
Page 468: Example

\[k = \frac{1}{1 + 0.33267 \times 0.2387} = 0.9264 \]

should be

\[k = \frac{1}{1 + 0.2316419 \times 0.2387} = 0.9476 \]

Page 470: CNDEV Function

The inverse cumulative normal distribution CNDEV in the computer code 0.92 should be replaced by 0.42. And in the fifth line from bottom the fifth plus sign should be changed to a multiplication sign that is \(r + (c(4)...) \) should be \(r \times (c(4)...) \). This code is also wrong on CD, fix it, or alternatively download replacement code from http://www.espenhaug.com/books.html

Page 496: Appendix C

In table of Differentiation Rules

\[f'(x) \text{ of } \frac{1}{x^a} \text{ should give } \frac{a}{x^{a+1}} \]

References