VALUATION Of DERIVATIVE SECURITIES USING QUASIRANDOM MONTE CARLO By Espen Gaarder Haug
Monte Carlo simulation is extremely
powerful for valuation and risk management of complex financial instruments!
One of the drawbacks have been the "extremely slowness" of standard
Monte Carlo simulation. Using quasirandom numbers solve this problem
to a large degree! To get an intuition of how much more efficient it is to use quasirandom numbers you can download a small Excel spreadsheet I have built. The Excel model use standard pseudorandom Monte Carlo and quasirandom Monte Carlo to value a European call or put option. I have also included the closed form Nobel price winning formula of BlackScholesMerton. This formula gives an exact solution, and in this way you can easily compare the standard Monte Carlo method with the quasirandom Monte Carlo simulations.
Online Java Applet QuasiRandom Monte Carlo Black Scholes Option Calculator (requires Browser that supports Java 2). Online Java Applet QuasiRandom TrippleAsset Option Calculator (requires Browser that supports Java 2). The table below shows European spread option values calculated using a very accurate 100 time step 3Dimensional binomial lattice model as well as quasirandom and pseudorandom Monte Carlo using 5000 simulations.
The quasirandom Monte Carlo is very close to the results of the lattice model. Standard pseudorandom Monte Carlo is on the other hand often far off, and would need many more simulations to get the necessary accuracy for any practical purposes. For 2 assets following a geometric Brownian motion it would in most practical cases be better to use a lattice model than quasirandom Monte Carlo. However for more complex processes and or more assets Monte Carlo simulation is often the "only" possibility. The QuasiMonte Carlo simulation could easily be combined with several wellknown variance reduction techniques. This would increase the accuracy even more, or alternatively reduce the computer time for the same accuracy. Spread options are frequently traded in the OTC markets and at the New York Mercantile Exchange, NYMEX (the spread options at NYMEX are American style).
The next figure shows approximations of the standard normal distribution, using 1000 pseudorandom numbers and 1000 quasirandom numbers. (The kurtosis numbers are the Fischer type, should be 0 for the normal distribution). For the quasirandom normal distribution the Fisher kurtosis is close to 0, as it should be. However for the pseudorandom numbers the kurtosos is 0.355. The reason for this is basically because the pseudorandom numbers are to "unstable/random" to give a good approximation with only 1000 "simulations".
For more information on Monte Carlo (MC) and quasiMonte Carlo (QMC) simulation visit the MCQMC page!

copyright Espen Haug 1998 2004 all rights reserved
